零七年属什么生肖| 欢天喜地是什么生肖| 结肠炎是什么症状| 红玛瑙适合什么人戴| 什么的太阳| 伤骨头了吃什么好得快| fla是什么牌子| 吃什么会长胖| 什么叫靶向治疗| 为什么会起湿疹| 性生活什么意思| 蜂蜜不能和什么食物一起吃| 不经意间是什么意思| 卖身契是什么意思| 00年属龙的是什么命| 与生俱来是什么意思| 每天坚持黄瓜敷脸有什么效果| 气血不足是什么引起的| 左手发麻什么原因| 婴儿游泳有什么好处和坏处| 糖尿病能喝什么饮料| 蜂蜜什么时候吃最好| 揩油什么意思| 大是大非是什么意思| 桥本甲状腺炎吃什么药| 冰箱双变频是什么意思| 为什么不能摸猫的肚子| mic是什么| 05是什么生肖| 老专家药膏有什么功效| 4月26日什么星座| 土人参长什么样| 脑血管堵塞是什么症状| 小孩子长白头发是什么原因| 梦见过河是什么意思| 婆媳关系为什么难相处| 订盟是什么意思| 什么茶好喝| 10.16是什么星座| 气管憩室什么意思| 5到7点是什么时辰| 达人是什么意思| 70年属狗的是什么命| 为什么肚子疼| 思利及人是什么意思| 肠鸣是什么原因引起的| 吃什么长胎不长肉| 结肠炎吃什么中成药| 中午吃什么饭家常菜| 心眼是什么意思| 潆是什么意思| 梦见陌生人死了是什么意思| 桂花是什么颜色的| 女性睾酮低意味着什么| 脸上为什么会长痣| 水逆是什么| 2月1日是什么星座| 农历10月是什么星座| 尿频尿急尿不尽吃什么药| 工夫是什么意思| 辐射是什么| 气血不足吃什么补得快| 6月24日什么星座| 办低保需要什么条件| 吃什么可以长头发| 落花生是什么意思| 湛江有什么好玩的| 为什么会得麦粒肿| cashmere是什么面料| 刀子嘴豆腐心什么意思| 什么蔬菜含铁高| 老年人头晕挂什么科| 汕头有什么好玩的地方| 非洲说什么语言| 火鸡面为什么那么辣| 睡眠不好用什么泡脚| 做胃镜之前需要做什么准备| 脚后跟疼痛什么原因| 黑乌龙茶属于什么茶| 乘务长是干什么的| 胶原蛋白有什么作用| 风是什么结构| 1129是什么星座| 三色堇的花语是什么| 感冒发烧吃什么好| 幽门杆菌有什么症状| ad医学上是什么意思| 艾滋病阴性是什么意思| 牙齿松动吃什么药| 手信是什么东西| 6月16是什么星座| 什么牌子的辅酶q10好| 1932年属什么生肖| 和风对什么| 行长是什么级别| 山药吃了有什么好处| 降维打击是什么意思| 腊月是什么生肖| 尿微量白蛋白是什么意思| 瞳距是什么意思| 炮灰是什么意思| 美的是什么牌子| police是什么品牌| 吃什么睡眠最快| 高血压吃什么最好| 睡不着觉是什么原因| 内容是什么意思| 男生为什么会勃起| 9.9是什么星座| 血糖仪什么牌子的好用又准确| 书到用时方恨少什么意思| 什么的国王| 用什么洗头白发能变黑| 月子期间可以吃什么水果| 低密度脂蛋白胆固醇高吃什么药| c919是什么意思| 卵巢早衰是什么引起的| 爆菊是什么意思| 女人喝蜂蜜水有什么好处| 氯偏低是什么原因| 肾结石检查什么项目| bc是什么牌子| 脑梗是什么症状| 喉咙一直有痰是什么原因| 月子早餐吃什么好| graves病是什么病| 涵养是什么意思| 三十周年结婚是什么婚| 嘌呤是什么意思| 三体是什么意思| 羊肚菌有什么功效和作用| 德巴金是什么药| 10月10号是什么日子| iabp医学上是什么意思| 容易长口腔溃疡是什么原因| 大连有什么好吃的| 35岁属什么生肖| 四维什么时候做| 经常嗳气是什么原因| 认贼作父是什么意思| 常务理事是什么职位| 10月26日什么星座| 蜻蜓为什么要点水| 粉红色泡沫样痰是什么病| 吃中药不能吃什么水果| 欲盖弥彰什么意思| hcg是检查什么的| 什么水果补铁效果最好的| 妇炎洁是什么| 又当又立是什么意思| 人为什么要喝水| 银联是什么| 胃疼吃什么消炎药| 脸部神经跳动吃什么药| 什么样的女人水多| 龟皮痒用什么药膏| 眼睛充血吃什么药| 波比跳是什么| 419是什么意思| 前白蛋白低是什么意思| 带教是什么意思| 心开窍于什么| 脾胃伏火是什么意思| 什么品牌的冰箱好| 什么是抗生素类药物| 中观是什么意思| 返酸水吃什么药| 黄体是什么| 师傅和师父有什么区别| 语迟则人贵是什么意思| 鲁班是干什么的| 老是肚子饿是什么原因| 无所不用其极是什么意思| 月经什么颜色的血是正常的| 摩羯后面是什么星座| 肝火旺吃什么中药| 子宫内膜炎症有什么症状| cip是什么意思| 为什么会得脂溢性皮炎| 什么药降尿酸最好| 行尸走肉是什么动物| 尿血吃什么药| 身体突然消瘦是什么原因| mark是什么牌子| 男人性功能不行是什么原因| 喝藿香正气水不能吃什么| 梦见自己头发白了是什么意思| 无什么不什么的成语| 不加大念什么| 腹部左侧是什么器官| tj是什么意思| 尿酸高适合吃什么食物| 超度什么意思| 羞羞是什么意思| 大米发霉是什么样子| 月经期间不能吃什么| x射线是什么| 为什么会突然长痣| 梦到老公出轨是什么意思| 管教有方是什么意思| 禁欲什么意思| 白细胞高是什么问题| 精神内科一般检查什么| 什么是双氧水| 什么花晚上开| 阿赖耶识是什么意思| 阴虱用什么药物| 氨水是什么东西| 膑是什么意思| 女人梦见蛇预示着什么| 浪琴手表属于什么档次| 手上长水泡是什么原因| 年轻人血压高是什么原因引起的| 冬虫夏草到底是什么| lg是什么牌子| 拉屎是绿色的是什么原因| 非萎缩性胃炎伴糜烂吃什么药| 血珀五行属什么| 为什么卧室要用木地板| 蒲公英治什么病| 做噩梦被吓醒预示什么| 咖啡有什么作用和功效| 十二月十四日是什么星座| 头孢是治疗什么病的| 身体抱恙是什么意思| 左眼一直跳是什么原因| 查宝宝五行八字缺什么| 感冒吃什么好得快| 什么像| 棘手是什么意思| 梦见种地是什么意思| 脚真菌感染用什么药最好| 什么茶降火| 梦见自己的手镯断了什么意思| 鸡蛋不能和什么食物一起吃| 吊销是什么意思| 心脏做造影是什么意思| 什么的形象| 五月26日是什么星座| 苦荞茶喝了有什么好处| 什么样的人容易得结石| 身份证借给别人有什么危害性| 一什么笑声| 什么是碱性磷酸酶高怎么回事| remax是什么牌子| 非礼什么意思| 大便有点绿色是什么原因| 漫游什么意思| 降血糖的草都有什么草| dic是什么意思| va是什么意思| 素股是什么意思| 婴儿42天检查什么项目| 右手中指指尖麻木是什么原因| 羸弱什么意思| 黑藻是什么植物| 中国文字博大精深什么意思| 朗格手表什么档次| 中医考证需要什么条件| hr是什么牌子| 什么是钼靶检查| 利润是什么| 尿为什么是黄色的| 举足轻重什么意思| 百度
Skip to Content
0%

Китайско-российские отношения -- одна из примечательных тем двух сессий

future of AI agents
The AI agent of tomorrow will be a force multiplier unleashed. [Image credit: Aleona Pollauf/Salesforce]

Tomorrow’s AI agents won’t just execute tasks — they’ll listen, see, and learn your preferences. They'll even manage and coordinate with other agents to get work done.

You’ve seen the ripples of what AI agents can do. Now, get ready for the tidal wave. 

The future of AI agents? It’s agents that can hear your commands and see the world alongside you. It’s AI orchestrating AI, creating a symphony of digital labor. It’s agents with digital memories that learn your patterns and foresee your next move. Forget incremental upgrades. The AI agent of tomorrow will be a force multiplier unleashed.

Here are five ways that agents — like those powered by Agentforce, the Salesforce platform for building AI agents — will evolve.

1. Agents will understand much more than text

Today, artificial intelligence (AI) agents are primarily text-based: They interact with and process information in the form of typed messages, commands, or queries. But they can’t understand or respond to images, audio, or video, and this lack of contextual richness limits their ability to handle complex, real-world situations.  

“We can do a lot more than that. The world is full of information that’s not words,” said Juan Carlos Niebles, research director at Salesforce. “An agent will be able to look at an image or listen to an audio clip or a person’s voice. You give it eyes and ears, and you open a door to other types of data that the agent could understand and process.”

In field service, a service technician could use their Agentforce app to record audio of a sputtering car engine, and ask Agentforce to diagnose the problem. In marketing, AI agents could analyze social media trends in real time, like a sudden spike in videos about ’80s-inspired leg warmers. In customer service, they could analyze audio from service calls, picking up on recurring negative sentiment from the tone of a customer’s voice. 

To do this, AI agents must be able to see images and videos, and hear sounds. In a nutshell, this is accomplished by adding neural networks that can translate the input data from the new modality (voice, audio, video, visual) into tokens that a large language model (LLM) can understand. 

To explore the future of multimodal AI, Salesforce AI Research has developed xGen-MM-Vid, a multimodal LLM that helps AI interpret videos. Take a look. 

The future of AI agents is also voice: Soon, they’ll understand and respond to our spoken requests. Imagine verbally asking an agent to do the following: 

“Access Q2 sales performance from the shared drive, and analyze KPIs with a focus on revenue growth, churn rate, and customer acquisition cost. Then, summarize the analysis, present your top findings, and identify the most important areas for improvement. Finally, recommend two actionable next steps to remedy the challenges.” 

This is an enormous time-saver, but that’s only half the story. Since AI agents can quickly process huge amounts of data, they can help workers uncover trends they might otherwise miss, identifying subtle but important correlations between data. 

2. Agents will work effortlessly with other agents

Right now, AI agents generally work solo to handle individual tasks, like customer service or inventory management. But soon, systems of multiple agents, each with a specialized role, will work together to carry out more complex tasks to achieve broader goals. This will be a force multiplier in terms of scale, speed, and strategic decision-making, fundamentally altering operational workflows and enabling a level of coordinated efficiency that’s not possible with an all-human workforce. Call it the age of agent-to-agent, or A2A. 

For example, in ecommerce, a multi-AI agent system could include one agent handling customer inquiries, another managing inventory, and a third optimizing pricing based on demand, all working together in real time to improve efficiency and maximize sales.

This collaboration could be taken even further, with AI working across organizations, industries, and entire ecosystems to negotiate, optimize, inform, and maybe even influence decisions on a global scale. 

Imagine a global supply chain where AI agents from different companies work together to coordinate logistics, source materials, and manage distribution. They react in real time to delays, demand shifts, and disruptions, keeping everything running smoothly. The result? A self-regulating, ultra-efficient network that practically runs itself.

But even in an increasingly autonomous A2A world, human oversight will remain critical for setting ethical boundaries, addressing unforeseen circumstances, and ensuring alignment with business strategy and human values. The role of humans may evolve to focus on strategic guidance, and ensuring the AI ecosystem serves human needs and goals.

These interdependent, multi-agent systems will require sophisticated coordination, orchestration, and governance — by both humans and AI — that transcends traditional oversight models. Experts in Salesforce AI Research and the Global AI Practice recently laid out three methods of managing multi-agent complexity.

3. Orchestrator agents will manage teams of agents

Just like human workers, teams of AI agents need a manager to direct and coordinate different activities, and oversee multistep tasks through to competition. But in the future of AI agents, those managers will be other AI agents. 

Silvio Savarese, executive president and chief scientist, AI Research, at Salesforce, recently described an orchestrator agent that coordinates the work of multiple specialist agents, similar to how a restaurant’s general manager oversees the work of hosts, servers, managers, chefs, cooks, and expediters.  

What does this look like in an enterprise context? A service agent could process a customer’s inquiry while an inventory agent checks product availability. A logistics agent calculates shipping, and a billing agent reviews and processes payment options. 

As Savarese noted, “The orchestrator agent coordinates all these inputs into a coherent, effective, on-brand, and contextually relevant response for the human at the helm to review, refine, and share with the customer.” 

In other words, instead of juggling multiple individual agents, employees can work with one smart lead agent that coordinates everything behind the scenes. 

And orchestrator agents make it easy to grow and adapt. Think of them as smart connectors for your AI. When your business changes or you find new AI tools, you can easily add them to your system without having to rebuild everything from scratch. This keeps your AI setup ready for the future and able to handle new things.

4. Agents will get much better at reasoning

A reasoning engine is an AI system that mimics human-like decision-making and problem-solving based on certain rules, data, and logic. Essentially, it’s how an agent decides what actions to take, and which data is needed to take those actions. 

A strong reasoning engine allows an AI to go beyond surface-level data, analyzing complex patterns, inferring user intent, and understanding the nuances of a user’s behavior, preferences, and needs. Instead of just reacting to keywords or simple commands, it can grasp the underlying context of a user’s interactions.  

“This is about getting the AI agent to do more complex things. It’s not just a one-step task,” said Niebles. “It’s a chain of maybe 10 different actions to accomplish a goal.” 

For example, here’s how an AI reasoning engine could power a multipronged, multistep marketing campaign:

  • It analyzes data to identify target audiences and their preferences,
  • Uses abductive (best-guess) reasoning to segment audiences and personalize messages,
  • Orchestrates a campaign around the best channels and steps for the different segments,
  • Monitors performance, and reallocates resources when necessary, and
  • Reports on performance and strategy, identifying trends for future projects.

Agentforce and Salesforce’s Atlas Reasoning Engine represent significant steps forward, enabling this functionality. Shipra Gupta, senior director of product management at Salesforce, recently described some of these advancements:   

Reasoning and Acting (ReAct)-style prompting, in which the system goes through a loop of reasoning, acting, and observing until a user’s goal is realized. The looping lets the system consider new information, and ask questions so the goal is fulfilled accurately. 

Topic classification maps topics to a user’s intent or a job to be done. When a request is made, it’s mapped to a topic, which contains a set of instructions, business policies, and actions to fulfill the request. This helps define the scope of the task and the corresponding solution for the LLM. 

Using LLMs for responses dramatically changes how AI talks to you. Before, it would give only action-focused answers. Now it understands context, just like a colleague. This lets you ask follow-up questions or request more details, making it much easier for the AI to help you get what you need.

Agents will be so intelligent that they’ll know when such high-level reasoning is overkill. Anthropic’s cofounder and chief scientist Jared Kaplan told MIT Technology Review that agents will know when to apply reasoning “when it’s really useful and important, but also [know not to waste] time when it’s not necessary.”

5. Agents will remember everything that matters

Today’s AI agents suffer from short-term memory, and that’s a problem. 

Antonio Ginart, lead applied scientist for AI Research at Salesforce, described it this way:  Imagine that you jotted down some notes from your workday on sticky notes, and the next day, the only thing you remembered were those few things you wrote down. 

“That’s kind of what it’s like now between sessions with AI,” he said. 

Long-term coherence (or memory) means agents can recall and understand what happened in past interactions over long periods of time, not just the most recent exchanges. This memory provides context to carry out current tasks. This is important not only for agents to handle multistep tasks, but in building better relationships with customers by recalling all past preferences, problems, and interactions. 

True long-term coherence is not yet a fully solved problem in all scenarios, but that’s changing fast. 

Imagine if an AI agent could follow a patient’s care over months or even years, tracking symptoms, appointments, test results, and treatments without ever losing context. It could remind the patient to refill a prescription, flag when a symptom changes, alert doctors to any changes, and adjust recommendations as their health evolves. There’s no repetition or starting over. 

Long-term coherence will also help teams of agents collaborate more effectively by sharing what they know, allowing for better cross-functional work. One example: A legal agent and a logistics agent could work together to onboard a new partner without duplicating requests or missing any steps.  

The future of AI agents: Multi-agent, multimodal, massive impact

As impressive as AI agents are today, what lies ahead is far more transformative: intelligent, coordinated AI agents operating across functions to drive efficiency, insight, and growth at scale. Specialized agents will uncover actionable insights from vast datasets. Scalable agents will absorb peak demand without compromise. And orchestrated agents will manage operations seamlessly across the enterprise.

Multimodal AI will further amplify this shift, allowing agents to understand and act on a mix of inputs like text, voice, images, and video, just as humans do. This will result in more natural interactions, richer insights, and broader applications.  

The organizations that embrace this shift early will be best positioned to lead, faster to innovate, quicker to respond, and better equipped to deliver value.


Get the latest articles in your inbox.

脾胃不好吃什么药效果好 为什么山东人个子高 为什么男人喜欢女人的胸 婴儿湿疹用什么 女人右下巴有痣代表什么
不安腿综合征吃什么药 愤青什么意思 8月1日什么星座 胚发育成什么 抢沙发是什么意思
痘痘反复长是什么原因 吃什么助勃药能硬 空调外机风扇不转是什么原因 法脉是什么意思 ems是什么
急性盆腔炎有什么症状表现呢 天下无双是什么生肖 做梦坐飞机是什么意思 偏头痛不能吃什么食物 长焦镜头是什么意思
厅局级是什么级别naasee.com 新生儿为什么会有黄疸hcv9jop1ns2r.cn 12月27号是什么星座hcv8jop9ns8r.cn 狮子的天敌是什么动物hcv8jop3ns3r.cn 血脂高什么意思hcv8jop3ns4r.cn
马甲线长什么样hcv8jop6ns7r.cn 亚甲蓝注射起什么作用hcv9jop0ns6r.cn 右束支传导阻滞是什么意思hcv9jop1ns1r.cn 离婚要什么手续和证件hcv8jop7ns9r.cn 一见倾心什么意思hcv9jop4ns5r.cn
得五行属什么hcv7jop9ns8r.cn 脑干堵塞什么症状hcv7jop6ns4r.cn 拔牙后吃什么hcv8jop5ns3r.cn 头不由自主的轻微晃动是什么病hcv8jop7ns2r.cn 冬眠灵是什么药hcv9jop5ns1r.cn
无赖不还钱最怕什么hcv9jop8ns1r.cn spao是什么牌子hcv9jop1ns9r.cn 尿不尽挂什么科xinmaowt.com 小螃蟹吃什么hcv8jop3ns6r.cn 蚧壳虫用什么药hcv8jop7ns5r.cn
百度